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Electronic Transition Moment Variation in
the C’I1-X>3" System of Boron Monoxide

K. Sunanda, P. Saraswathy and M. D. Saksena
Spectroscopy Division, Bhabha Atomic Research Centre, Trombay,
Mumbai, India

Abstract: The extensive band system belonging to the C*IT,—X*3" transition of boron
monoxide (BO) molecule lying in the vacuum ultraviolet region (150—230 nm) has
been recorded in emission in a hollow cathode glow. A few new bands involving
high v/ levels of C state have been observed. The Franck—Condon factors and
r-centroids were computed for the C—X system. By correlating the measured intensities
to theory, the (relative) variation of the C—X electronic transition moment with inter-
nuclear separation was examined.

Keywords: Boron oxide, Franck—Condon factor, vibronic intensity distribution

INTRODUCTION

Historically, the spectrum of boron monoxide (BO) has played an important role
in the development of quantum theory; Mulliken ' as early as in 1925 established
experimentally for the first time the vibrational isotope effect and later verified the
existence of zero-point energy in molecules. The reaction dynamics of
the formation of BO in low-lying electronic states gained interest, following
the suggestion of a possible lasing action in the A’IL;—X*3™ transition.*!
The electronic spectra of BO reported to date are identified to belong
to a (AML-X’37:337-637nm), B (B°ST-X*37:214-330nm), and
v (CT1,-X?27:150-230 nm) systems.*~ %! Configuration-interaction studies
of the low lying electronic states of BO by Karna and Grein """ suggested 16
stable states including four Rydberg states, out of which only four stable states
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(X*3", AL, BT, and CI1,) can so far be characterized experimentally.
Investigation of the perturbing C?II states has revealed the existence of few
dark states like *3, 23, and 2A, but so far no molecular constants for these
states are known. Electronic transition moment variation with internuclear
distance for the A—X and B-X, from experimentally measured intensity, is
reported to be linearly increasing in the domain 1.24 < r < 1.42 A2

In this paper, we report the vibrational studies carried out on the C—X
system of BO molecule. The emission spectrum of BO has been recorded at
a moderate resolution of 1.1 A. We present, for the first time, the results of
the quantitative study of the variation of the (relative) electronic transition
moment with the internuclear separation for the C—X system.

MATERIALS AND METHODS

To record the C—X band system of BO molecule, earlier workers have used
both microwave and hollow cathode (HC) excitations. In our case, the use
of HC run at high currents (500 mA) helped us to record the entire system
in the region 1400-3200 A with good intensity. Anhydrous boric oxide
(B,O3) was loaded in the stainless steel cathode, and the neon flow was
adjusted using a needle valve to obtain a steady glow. To get the best exci-
tation condition, different rare gases like argon and helium were also tried
as buffer gases. Though spectra appeared with good intensity with argon,
the presence of strong atomic lines of argon overlapping the weak vibrational
band-heads made the vibrational assignment difficult. With helium, the hollow
cathode glow was difficult to sustain at low pressures, and for high pressures of
helium, BO spectra appeared weak and broadened. Neon was found to be a
better buffer gas for exciting the BO spectra. To obtain an intense spectrum
of BO, the neon flow had to be kept at low pressure (~1-2 Torr); at high
pressures of neon, the bands of BO were found to be broadened. The
spectrum was recorded on a 1-m normal incidence vacuum monochromator
(Acton VM521, Acton Research Corp., USA), having a resolution of
~1.1 A using 1200 grooves/mm grating blazed at 1500 A. The detector
was photomultiplier tube (PMT) (9635QB) with a sodium salicylate—coated
window kept in front. The absolute quantum efficiency of sodium salicylate
for exciting radiation between 400 and 3400 A is about 65% and is almost
constant. An in-house assembled data acquisition system (DAS) was used
for scanning the spectrum and to collect the data. A lithium fluoride
window was used at the entrance slit, and the monochromator was pumped
through a turbo molecular pump to maintain a vacuum of about 10~> mbar
inside. The hollow cathode lamp was coupled directly to the entrance port
of the monochromator without any focusing devices. Boron atomic lines
served as standard for wavelength calibration. In order to study the
variation of the electronic transition moment, the height of the bands was
approximated as the band intensity.
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RESULTS AND DISCUSSION
Vibrational Structure

Figure 1 shows an overview of the observed band system of BO in the 1500—
2500 A region. As seen from the figure, the extensive system of bands belong
to C2IT- X3 transition overlapped on the longer wavelength region by some
bands of the B system. The wave number of the band-heads were fitted to a
least-squares program to yield the vibrational constants of the C’II state
with an overall standard deviation of ~5cm™'. The vibrational analysis
could be extended to bands involving v/ = 10 in the C state. The resulting
vibrational constants agreed with those reported by previous workers.'"
The band-heads along with their vibrational assignments are listed in
Table 1. The newly observed bands are marked with an asterisk in Table 1.
Although we obtained bands involving v = 10 levels, the w.y; value of the
C state could not be determined very precisely. From the Birge—Sponer
plot, the C and X states dissociation energy values were computed to be
39,900 cm ™! and 60,510 cm ™!, respectively. These values suggest that the
C’II state correlates diabatically with [B(ZP) + O*(IS)] and X*37 into
[BCP) + OCP)].

Intensity Distribution

The reinvestigation of the C—X system was taken up to correlate the relative
variation of the electronic transition moment with internuclear separation r.
The C-X system of BO is rather extensive, so the net electronic transition
intensity is distributed among many vibronic transitions. A quantitative
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Figure 1. C*TI,—X*3 band system of BO.
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Table 1. Band-heads of the C—X system of BO molecule

K. Sunanda et al.

V,'VH /\V’,V"( A) vv’,v”(cm_ l) Iobs Ical FCF Vcentroid
0-0 1816.48 55051.53 5.2 6.44 0.129 1.2608
0-1 1880.00 53191.49 10.0 10.0 0.278 1.2943
0-2 1947.14 51357.37 9.3 7.45 0.285 1.3277
0-3 2018.87 49532.66 3.1 3.50 0.185 1.3612
0-4 2094.51 47743.86 1.6 1.16 0.084 1.3952
1-0 1774.93 56340.25 6.7 8.09 0.241 1.2375
1-1 1835.54 54479.88 2.9 3.40 0.140 1.2707
1-3 1967.19 50833.93 1.9 1.30 0.102 1.3384
1-4 2039.08 49041.72 3.9 1.92 0.206 1.3713
1-5 2115.47 47270.82 2.7 1.19 0.175 1.4050
1-6 2196.45 45528.01 — — 0.009 1.4396
2-0 1735.69 57613.97 4.0 5.55 0.245 1.2147
2-2 1854.88 53911.84 2.7 1.39 0.116 1.2814
2-3 1919.26 52103.41 2.5 0.84 0.097 1.3134
2-5 2060.15 48540.15 0.9 0.42 0.091 1.3822
2-6 2136.67 46801.80 1.0 0.62 0.182 1.4153
2-7 2218.11 45083.43 0.8 0.38 0.153 1.4498
2-8 2304.11 43400.70 — — 0.008 1.4857
3-0 1698.98 58858.84 1.7 2.77 0.180 1.1923
3-1 1754.12 57008.64 0.9 0.51 0.045 1.2252
3-2 1813.31 55147.77 1.2 0.86 0.105 1.2586
3-4 1939.48 51560.21 0.6 0.49 0.113 1.3244
3-5 2008.37 49791.62 0.5 0.18 0.056 1.3553
3-8 2240.19 44639.07 — — 0.173 1.4605
3-9 2327.17 42970.65 — — 0.126 1.4966
3-10 2419.70° 41327.10 — — 0.057 1.4968
4-0 1663.99 60096.51 0. 1.13 0.107 1.1702
4-1 1717.45 58225.86 0.7 0.95 0.124 1.2030
4-3 1832.65 54565.79 — — 0.088 1.2696
4-4 1894.15 52794.13 — — 0.037 1.3002
4-6 2029.84 49264.97 — — 0.105 1.3668
4-9 2262.836" 44179.17 — — 0.140 1.4722
4-10 2351.40° 42526.23 — — 0.159 1.5015
5-0 1631.59 61289.91 0.2 0.39 0.055 1.1484
5-1 1682.52 59434.66 0.5 0.76 0.144 1.1816
5-3 1792.80 55778.67 — — 0.081 1.2479
5-7 2051.40° 48746.48 — — 0.074 1.3786
6-0 1600.97 62462.13 — — 0.025 1.1266
6-1 1649.85 60611.57 0.16 0.74 0.115 1.1602
6-6 1936.37 51643.02 — — 0.062 1.3234
6-9 2147.45¢ 46566.86 — — 0.093 1.4219
7-1 1619.65“ 61741.73 — — 0.074 1.1390
8-2 1637.94¢ 61052.29 — — 0.105 1.1511
8-3 1688.03¢ 59240.65 — — 0.052 1.1828
9-3 1656.93¢ 60352.58 — — 0.089 1.1629
10-3 1627.50° 61443.93 — — 0.094 1.1430

“New bands.
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study of C(v')—X(v”) vibronic intensity distribution and correlation to theory
helped us to map the variation of the electronic transition moment. The
vibronic intensity, I(v',v”) is given by

IV V") = Ky v /ve)' < VM)V > exp[—heG'(v)/KT], (1)

where v,/ is the band origin (approximated by the band-head positions), v is
the system origin, K is a constant of proportionality, and M(r) = <CII|
-2V (M, + iMy)|X22+> is the r-dependent electronic transition
moment. M, and M, refer to the molecule fixed components of the electric
dipole moment operator M. An initial value for vibrational temperature T
(~3320 K), governing the population distribution for upper state, was
estimated by plotting In(ly .y /(vy v /ve) gy ) versus G(v'). In studies of
this kind, it is usual to invoke the r-centroid approximation originally due to
Fraser''* and improved by Turner and Nicholls."'*! The squared vibronic tran-
sition moment |<V/|M(r)|v">|? then reduces to qv v |M(r\,/,v~)|2
where ¢, is the Franck—Condon factor and r, ,  is the r-centroid. For
fitting of the vibronic intensities, a polynominal of M in the form
M@ =14aé+ arf. .., where é= (r — r00)/Too (roo being the r-centroid
for the 0—0 band) was used. The final set of constants T, a;, a,, and so
forth, were estimated through an iterative procedure that minimized the sum
of the squared deviations. The potential energy curves for the C*IT and
X3 F states, the vibrational wave functions, and the matrix elements
<V'|F"|v"> for n=10, 1, 2... required for solving Eq. (1) were generated
using the TRAPRB program developed by Jarmain and Mc Callum!"! and
program LEVEL 6.0 obtained from Le Roy.!'®! The molecular parameters
needed for these computations were taken from Mal’tsev et. al.”’! The peak
height at the position of the R-head above the corresponding background
was measured and taken as the observed intensities I(v/,v”). The orders of
the other experimental artifacts like nonuniformity in the spectral response
and finite band pass of the monochromator!'”! are assumed to be constant in
the region of the calculation. It turned out that because of the limited
accuracy of our experimental intensities, only the linear coefficient a; could
be meaningfully determined. The final fit gave the following results:

T =3200 + 100K

M(@r) = (1 +2.26ry)1.10 < r < 1.50A with rgy = 1.2608

()
and K = 40.1.

In this limit of restricting M(€) to the linear term, the result of the deter-
mination of M(r) as outlined was found to be equivalent to using the r-centroid
approximation.''* In Table 1, the intensities calculated with Eq. (1) and Eq.
(2) are compared with the observed values. Franck-Condon factors (FCFs)
and r-centroids computed are also listed. During the calculation of the band
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intensities, the correction for the overall generic behavior of the monochroma-
tor and PMT response of the spectral region has been taken into account. But
for want of an absolute calibrated vacuum ultra violet (VUYV) intensity source
from 1500 A to 2500 A the absolute intensity value as a function of wave-
length could not be corrected, which could account for a maximum of
=+ 15% error. Discrepancies in some bands could also be attributed to overlap-
ping of the sequence bands. The observed intensities conform closely to the
theoretical values, which independently corroborates their assignments to
the C—X system.

CONCLUSIONS

The vibrational structure in the C?II,—X>3 " transition of boron mono-oxide
was studied and the system extended to v/ = 10 in the C state. The FCFs
and r-centroids for the band system were computed. The measured vibronic
intensity distribution and its theoretical elucidation suggest a linearly increas-
ing variation of the C—X transition moment with internuclear separation over
the range 1.10 < r < 1.50 A.
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